perm filename ZF.AX[257,JMC] blob
sn#046826 filedate 1973-06-06 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00003 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 DECLARE INDVAR r,PREDPAR A 2 B 1
C00004 00003 % Definitions %
C00005 ENDMK
C⊗;
DECLARE INDVAR r,PREDPAR A 2 B 1;
AXIOM ZF:
% Extensionality %
EXT: ∀x y.isset(x)∧isset(y) ⊃ (∀z.(zεx≡zεy)≡x=y));
% Null set %
EMT: ∀x.¬xεNIL;
% Unordered pair %
PAIR: ∀x y w.(wε{x,y}≡w=x∨w=y);
% Sum set %
UNION: ∀x z.(zεunion(x)≡∃t.(zεt∧tεx));
% Infinity %
INF: (0εInf∧∀y.(yεInf⊃(y∪{y})εInf));
% Replacement is equivalent to
∀x.∃!y.A(x,y) ⊃ ∀u.∃v.∀r.(rεv ≡ ∃s.(sεu∧A(s,r))) %
REPL: ∀x.(∃y.A(x,y)∧∀y z.(A(x,y)∧A(x,z)⊃y=z)) ⊃
∀u.∃v.(∀r.(rεv ≡ ∃s.(sεu∧A(s,r)))) ;
% Separation(weaker than replacment) %
SEP: ∀x.∃y.∀z.(zεy≡zεx∧B(z));
% Power set %
POWER: ∀x z.(zεpower(x)≡z⊂x);
% Regularity %
REG: ∀x.∃y.(x=0∨(yεx∧∀z.(zεx⊃¬zεy))); ; ;
% Definitions %
DECLARE PREDCONST FUN 1 INTO 2 PSUBSET 2,
OPCONST rng 1 dom 1;
AXIOM
SUBSET: ∀x y.(x⊂y≡∀z.(zεx⊃zεy));
PROPSUBSET: ∀x y.(PSUBSET(x,y)≡x⊂y∧¬x=y);
PAIRFUN: ∀x y z.(zε{x,y}≡z=x∨z=y);
UNITSETFUN: ∀x.( {x}={x,x} );
OPAIRFUN: ∀x y.( <x,y>={{x},{x,y}} );
FUNCTION: ∀w.(FUN(w)≡∀z.(zεw⊃∃x y.(z=<x,y>))∧
∀x y z.(<x,y>εw∧<x,z>εw⊃y=z) );
DOMAIN: ∀w x.(xεdom(w)≡FUN(w)∧∃y z.(yεw∧y=<x,z>));
RANGE: ∀w x.(xεrng(w)≡FUN(w)∧∃y z.(yεw∧y=<z,x>));
INTO: ∀w x.(INTO(w,x)≡x⊂rng(w));
UNION: ∀x y z.(zεx∪y≡zεx∨zεy); ;